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Adapted polynomial chaos expansion for failure detection
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Abstract

In this paper, we consider two methods of computation of failure probabilities by adapted polynomial chaos expan-
sions. The performance of the two methods is demonstrated by a predator–prey model and a chemical reaction problem.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Failure detection for systems with uncertainties is an ongoing topic in literature. Many concepts have
already been introduced. Among the most established methods are FORM and SORM which are based on
a Taylor approximation of the failure function in the point of highest failure probability, see [1,8,9,11,17].
For problems with mild nonlinearities, FORM and SORM are very fast and accurate methods. However,
for high nonlinearities, the resolution of these methods may not be sufficient, and more accurate and therefore
more expensive methods are required. Furthermore, FORM and SORM require derivative information which
is not always available. Among the methods that do not require derivative information are advanced Monte
Carlo methods, see [16].

In recent years, polynomial chaos expansion has become a very powerful tool for treating uncertainties, see
[10]. The method is especially well suited for complex systems such as finite element analysis and computa-
tional fluid dynamics, see [19]. In [4] stochastic finite element analysis has been established on the basis of Her-
mite-chaos expansion. This fundamental work has been later extended to a generalized, Askey-scheme based,
polynomial chaos expansion gPC [26]. In [23,24] multi-element generalized polynomial chaos expansion of the
random space (ME-gPC) is introduced in order to increase the effectiveness of gPC. This decomposition
corresponds to a h-type refinement of the random space. In [12,13] the random space is decomposed using
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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wavelets. So effective and accurate methods exist for the computation of central moments of the output, such
as the mean or the variance. For failure detection, information is required far away from the mean of the
input, in regions at the boundary of the input cumulative density function, because the mean of the input itself
should be of course in the safe region. The common polynomial chaos expansion, which may be interpreted
as an expansion about the mean of the stochastic process, is not suitable for reliability analysis at high sigma
level (say larger than five sigma). Some concepts to overcome this problem have already been introduced.
Ghanem proposes using additional sample information in the orthogonal complement of the Hermite expan-
sion, see [4–6].

In this paper, we concentrate on most probable-point-based methods where the problem of computation of
the failure probability splits into two parts: identifying and resolving the failure region. We present two poly-
nomial chaos expansions which are suitable for resolving the failure region which we call shifted (SH) and win-
dowed Hermite expansions (WH). Both methods aim at zooming into the critical region. The shifted Hermite
expansion is simply a Hermite expansion with respect to a shifted mean of the input. The windowed Hermite
expansion is a restriction of the normal Hermite expansion to a subset of the random space. Its construction is
analogous to the construction of one smaller element of the random space decomposition in [23,24] whose
work we learned of after finishing this paper. For identifying the failure region we can, for instance, compute
the point of highest failure probability (‘Beta point’) as is done in the FORM method. For evaluation of the
failure integral, we apply a sampling method to the Hermite approximation. We are mainly interested in prob-
lems with, in terms of CPU time, very expensive function evaluations (for example CFD problems). In these
problems sampling of the Hermite approximation is not prohibitive because the cost of evaluation and even
sampling of the Hermite approximation is much cheaper than the cost of one function evaluation. We show
that the proposed methods provide the desired failure information with higher accuracy than the usual (cen-
tral) Hermite expansion, with no higher computational complexity. Both methods are not restricted to failure
analysis, but generally provide a higher resolution of the solution in subdomains. In particular, the proposed
methods can be applied to stochastic finite elements. In this paper, we restrict ourselves to applications from
the field of stochastic ordinary differential equations. The first example is a predator–prey model where the
probability of survival of the two species is computed. The second one is an oscillating chemical reaction prob-
lem. The probability is computed that the amplitude of one species falls below a given limit. In the presented
examples, exact computation of the point of highest failure probability for identifying the failure region is not
necessary.
2. Central Hermite chaos (CH)

According to Wiener [25], homogeneous chaos is defined as a span of Hermite polynomial functional of a
Gaussian process. The theorem of Cameron and Martin [2] implies that the Fourier–Hermite series can
approximate any functional in L2 and converges in the L2 sense. So second-order random processes can be
expanded in terms of orthonormal Hermite polynomials. A general second order random process x(H), with
H being the random event, can be represented in the form:
xðHÞ ¼ a0H 0 þ
X1
i1¼1

ai1 H 1ðni1ðHÞÞ þ
X1
i1¼1

Xi1

i2¼1

ai1i2 H 2ðni1ðHÞ; ni2ðHÞÞ

þ
X1
i1¼1

Xi1

i2¼1

Xi2

i3¼1

ai1i2i3 H 3ðni1ðHÞ; ni2ðHÞ; ni3ðHÞÞ þ � � � ; ð1Þ
where Hjðni1ðHÞ; . . . ; nijðHÞÞ denotes the Hermite chaos of order j in the variables ðni1 ; . . . ; nijÞ and the Hj are
Hermite polynomials in terms of the standard Gaussian variables n with zero mean and unit variance. The Hj

are generated by the formula of Rodriguez:
H jðnÞ ¼ ð�1Þje1
2n

Tn o
j

oni1 � � � onij

e�
1
2n

Tn: ð2Þ
In one dimension, the first three polynomials are:
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H 0ðnÞ ¼ 1; ð3Þ
H 1ðnÞ ¼ n; ð4Þ
H 2ðnÞ ¼ n2 � 1: ð5Þ
Eq. (1) can be rewritten, for notational convenience, in the form
xðHÞ ¼
X1
i¼0

âiWiðnÞ; ð6Þ
where there is a one-to-one correspondence between the functions H jðni1 ; . . . ; nijÞ and WiðnÞ. The polynomials
Wi form a complete orthonormal basis of the Hilbert space H with the inner product:
hf ðnÞ; gðnÞi ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn

p Z
Rn

f ðnÞgðnÞe1
2n

Tn dn: ð7Þ
So
H ¼ spanfW0ðnÞ;W1ðnÞ;W3ðnÞ; . . .g ð8Þ

see also [19].

Thus, each functional f ðnðHÞÞ 2 H with
hf ðnðHÞÞ; f ðnðHÞÞi <1

may be approximated by a series of Hermite polynomials in the L2 sense:
f ðHÞ ¼
X1
i¼0

ciWiðnðHÞÞ: ð9Þ
Best approximation of a function f ðnÞ in the Hermite base
min
c2Rn
kf ðnÞ �

XM

i¼0

ciWiðnÞk2 ð10Þ
leads to the normal equations:
f ðnÞ �
XM

i¼0

ciWiðnÞ
 !

; WkðnÞ
* +

¼ 0; k ¼ 0; . . . ;M : ð11Þ
Due to the orthonormality of the base functions, Eq. (11) reduces to the common Fourier integrals:
ci ¼ hf ðnÞ;WiðnÞi ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn

p Z
Rn

f ðnÞWiðnÞe�
1
2n

Tn dn; i ¼ 0; . . . ;M ; ð12Þ
where c0 is the mean of f ðnÞ.
The coefficients (12) may be computed by a multi-dimensional Gauss–Hermite quadrature [3]:
ci �
XN

j¼1

wjf ðnjÞWiðnjÞ; i ¼ 0; . . . ;M ð13Þ
with multi-weights wj and abscissae nj; j ¼ 1; . . . ;N . The components nj
k of nj are the roots of the one-dimen-

sional basic polynomial Hs of degree s and
N ¼ sn: ð14Þ

In [7], we have developed an adaptive, error controlled Gauss quadrature, which is especially well suited for
high dimensions n. With this algorithm, the number N of function evaluations of the non-adaptive Gauss
quadrature may be reduced drastically.

Also time dependent Gaussian processes, which are described by a differential equation, may be approxi-
mated by a series of Hermite polynomials. Let
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yðt; nÞ �
XM

i¼0

yiðtÞWiðnÞ; _yðt; nÞ ¼ f ðyðt; nÞ; nÞ: ð15Þ
Inserting the series into the differential equation and projecting the resulting equation onto the Hermite base
leads to the following equations:
XM

i¼0

_yiðtÞ WiðnÞ;WkðnÞh i ¼ f
XM

i¼0

yiðtÞWiðnÞ
 !

; WkðnÞ
* +

; k ¼ 0; . . . ;M : ð16Þ
Due to the orthonormality of the base functions, it holds:
_ykðtÞ ¼ f
XM

i¼0

yiðtÞWiðnÞ
 !

; WkðnÞ
* +

; k ¼ 0; . . . ;M : ð17Þ
3. Shifted Hermite chaos (SH)

Shifted Hermite chaos is a special most probable-point-based method for evaluation of failure probabilities.
Let the failure function be given by
gðnÞ
P 0 stable;

< 0 not stable:

�
ð18Þ
Then the probability of failure is
P ðgðnÞ 6 0Þ ¼
Z

gðnÞ60

qnðnÞ dn; ð19Þ
where qnðnÞ is the density of the random variable n.
For failure detection, a good resolution of the region of large failure probability is necessary. For standard

normal random variables, the point of the largest probability of failure (‘Beta point’) is usually calculated as
the solution of the optimization problem [17]:
min knk2
; gðnÞ 6 0: ð20Þ
By ‘shifted’ Hermite chaos (SH) we simply mean the normal Hermite chaos with respect to a shifted mean l of
the input. l may be the Beta point or an approximation of it. Though there is no theoretical difference between
(SH) and (CH), we would like to make some short comments on it. A stochastic function may be written as:
f ðnþ lÞ ¼
X1
i¼0

ciWiðnÞ ð21Þ
or
f ð~nÞ ¼
X1
i¼0

ciWið~n� lÞ ¼
X1
i¼0

ciW
s
i ð~nÞ; ð22Þ
where ~n is now a random vector with mean value l. With respect to the following inner product, the shifted
Hermite polynomials form an orthonormal basis:
hf ð~nÞ; gð~nÞis ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn

p ¼
Z

Rn

f ð~nÞgð~nÞe�1
2ð~n�lÞTð~n�lÞ d~n ð23Þ
The projection of the shifted Hermite chaos (21) onto the centralized base functions (2) and truncation of the
series leads to a linear system for the unknown coefficients Ui(t):
hf ðnþ lÞ;WkðnÞi ¼
XM

i¼0

cihWiðnÞ;WkðnÞi; k ¼ 0; . . . ;M : ð24Þ
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Eq. (24) may be interpreted as a best approximation of a function f(H) by Hermite approximation in the
shifted scalar product (23):
0 ¼ f ðnþ lÞ;WkðnÞh i �
XM

i¼0

ci WiðnÞ;WkðnÞh i ¼ f ðnþ lÞ �
XM

i¼0

ciWiðnÞ;WkðnÞ
* +

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn

p Z
Rn

f ðnþ lÞ �
XM

i¼0

ciWiðnÞ
" #

WkðnÞe�
1
2n

Tn dn

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn

p Z
Rn

f ð~nÞ �
XM

i¼0

ciW
s
ið~nÞ

" #
Ws

kð~nÞe�
1
2ð~n�lÞTð~n�lÞ d~n ¼ f ð~nÞ �

XM

i¼0

ciW
s
i ð~nÞ;Ws

kð~nÞ
* +

s

:

The corresponding best approximation problem is:
min
c2Rn
kf ð~nÞ �

XM

i¼0

ciW
s
i ð~nÞk

2
s ; ð25Þ
where
kf k2
s ¼ hf ; f is: ð26Þ
Method (SH) is tested by best approximation of the function
f ðxÞ ¼ 10 � sinðxÞ � arctanðxÞ � �2; ð27Þ

see Fig. 1.

In the vicinity of shift �2, (SH) approximates the given function more accurately than (CH). As in the cen-
tralized case, also stochastic processes given by a differential equation, see Eq. (15), may be handled by the
shifted polynomial chaos.

4. Windowed Hermite chaos (WH)

For evaluation of the probability of failure (19) it is essential to have a good approximation of the solution
in a neighbourhood M of the point of highest failure probability (the so called ‘Beta’ point). One possibility to
achieve this goal is to use conditional Hermite chaos that is the normal Hermite chaos conditioned on M. The
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construction of conditional Hermite chaos is analogous to the construction of smaller elements of the random
space decomposition in [23,24]. In 1D, the corresponding scalar product to conditional Hermite chaos is
defined by:
hf ; gi ¼
Z

R

f ðnÞgðnÞqðnjn 2MÞ dn
with
qðnÞ ¼ 1ffiffiffiffiffiffi
2p
p e�

1
2n

2

denoting the density of the normal Hermite chaos. For the special case of an interval M ¼ ½a; b� the scalar
product is
hf ; giw ¼
Z

R

f ðnÞgðnÞqðnka 6 n 6 bÞ dn ¼ 1

C

Z b

a
f ðnÞgðnÞqðnÞ dn
with the corresponding norm
kf kw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hf ; f iw

q

and
C ¼
Z b

a
qðnÞ dn:
This special conditional Hermite chaos will be called windowed Hermite chaos (WH) in the following. A set of
orthonormal basic polynomials f/j; j ¼ 1; 2; . . .g can be constructed by the Gram–Schmidt orthogonalization
procedure, see Appendix A. The natural generalization to the n-dimensional case is:
hf ; giw ¼
1

C

Z b1

a1

� � �
Z bn

an

f ðnÞgðnÞe�1
2n

Tn dn ð28Þ
and
C ¼
Z b1

a1

� � �
Z bn

an

e�
1
2n

Tn dn:
The set M is now equal to the window W ¼ ½a1; b1� � � � � � ½an; bn� around the Beta point. Analogously to the
Hermite polynomials, the n-dimensional basic polynomials for this scalar product can be constructed as tensor
products of the one-dimensional polynomials:
Ww
q ðnÞ ¼

Yn

k¼1

/nqk
ðnkÞ
with multi-indices nq satisfying
Pn

k¼1nqk 6 P , P is the order of the chaos. An important condition that makes
the tensor product construction possible is that in the density function qðnÞ ¼ e�

1
2n

Tn coordinates can be
separated:
qðnÞ ¼
Yn

i

qiðniÞ: ð29Þ
Condition (29) is fulfilled for independent random variables ni. For dependent normal random variables with
covariance matrix V, a linear transformation n ¼ T Ln0 from n to an independent standard normal vector n0

may be applied, with TL given by the Cholesky decomposition of V. For the general case of dependent mixed
normal and non-normal random variables, there is no exact transformation available. As approximation, the
nonlinear Rosenblatt transformation n ¼ T ðn0Þ [18] may be applied. Since the windowed Hermite polynomials
form a complete basis in the corresponding Hilbert space, we can expect the windowed Hermite expansion to



M. Paffrath, U. Wever / Journal of Computational Physics 226 (2007) 263–281 269
converge to any L2 functional in the L2 sense in the corresponding Hilbert functional space, as a generalized
result of the Cameron–Martin theorem [2]. Best approximation of a function f(n) in the window W:
min
c2Rn

f ðnÞ �
XM

i¼0

ciW
w
i ðnÞ

�����
�����

2

w

ð30Þ
leads (see Section 2) to the normal equations:
f ðnÞ �
XM

i¼0

ciW
w
i ðnÞ

 !
;Ww

k ðnÞ
* +

w

¼ 0; k ¼ 0; . . . ;M ð31Þ
with
ci ¼ hf ðnÞ;Ww
i ðnÞiw: ð32Þ
As in (13), the coefficients ci are computed by a multi-dimensional Gauss–Hermite quadrature:
ci �
XN

j¼1

wjf ðnjÞWw
i ðn

jÞ; i ¼ 0; . . . ;M ð33Þ
with multi-weights wj and abscissae nj; j ¼ 1; . . . ;N . The components nj
k of nj are the roots of the one-dimen-

sional windowed-Hermite basic polynomial of degree s and N ¼ sn. All roots are distinct and nj
k 2 ðak; bkÞ (see

[22]), so nj 2 W , and the Gauss–Hermite quadrature is well defined.
Consider now the two-dimensional example of Fig. 2 where the Beta point is marked by a circle. In order to

get a good resolution of g in the neighbourhood of the limit surface fn : gðnÞ ¼ 0g, Fig. 2 shows that it may be
advantageous to use a rotated window parallel to the tangent plane in the Beta point. So one coordinate is in
the direction of rgðnÞ in the Beta point and is closely related to the variation of probability density. There is
an orthogonal transformation from the local coordinate system g of the rotated window to the original coor-
dinate system n:
n ¼ Qgþ n�;
n� is the Beta point, the first column of Q is the normalized gradient rgðnÞ, the remaining columns can be
again computed by Gram–Schmidt, for example.

The scalar product is now
hf ; giw ¼
Z b1

a1

� � �
Z bn

an

f ðgÞgðgÞe�1
2ðQgþn�ÞTðQgþn�Þ dg;
where W rot ¼ ða1; b1Þ � � � � � ðan; bnÞ is the rotated window. The density function qðgÞ ¼ e�
1
2
ðQgþn�ÞTðQgþn�Þ again

fulfills condition (29) due to the orthogonality of Q, so the construction of n-dimensional basic polynomials by
Fig. 2. Rotated window for approximation of g-function.
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tensor products is possible. Method (WH) is again tested by best approximation of function (27). Fig. 3 shows
a comparison with (CH), Fig. 4 shows a comparison with (SH). In the interval [�3,�1], (WH) perfectly fits the
given function. So you can see only three curves in Fig. 4.

An error estimation of windowed Hermite chaos for the computation of failure probabilities is given in
Appendix B.
5. Probability of failure

In this section, we apply methods (SH) and (WH) to the computation of failure probabilities. Let the failure
function and probability of failure be given by (18) and (19), respectively. The solution of the optimization
problem (20) defines

� either the shift l for the shifted Hermite polynomials Ws
i ðnÞ

� or the center of a window W ¼ ½l1 � c; l1 þ c� � � � � � ½ln � c; ln þ c� for the windowed Hermite polynomi-
als Ww

i ðnÞ

Instead of solving the optimization problem, also any other reasonable shift, suggested by the application,
may be applied.

The failure function gðnÞ is now approximated by one of the modified Hermite expansions:
gðnÞ � gmðnÞ ¼
XM

i¼0

giW
m
i ðnÞ; m ¼ s;w
Often the failure function depends on state variables, which are given by differential equations. Then, the
approximation of the failure function is given by
gðx1ðnÞ; . . . ; xkðnÞÞ � gmðnÞ ¼ g
XM

i¼0

xi;1W
m
i ðnÞ; . . . ;

XM

i¼0

xi;kW
m
i ðnÞ

 !
; m ¼ s;w:
The probability of failure may be now computed by



-25

-20

-15

-10

-5

0

5

 10

 15

 20

 25

-6 -4 -2 0 2 4 6

y

x

Comparison of best approximation of f(x)=10*sin(x)*arctan(x)**2 by 
 Shifted and Windowed Hermite Polynomials  of order 6 

 (shift mu=-2, window [-3:-1])

Function f(x)
Central Hermite PC
Shifted Hermite PC

Windowed Hermite PC

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-3 -2.5 -2 -1.5 -1

y

x

Comparison of best approximation of f(x)=10*sin(x)*arctan(x)**2 by 
 Shifted and Windowed Hermite Polynomials  of order 6 

 (shift mu=-2, window [-3:-1])

Function f(x)
Central Hermite PC
Shifted Hermite PC

Windowed Hermite PC

Fig. 4. Best approximation of the function f(x) = 10*sin(x)*arctan(x)**2 in the range [�6 :6] (upper picture) and [�4 :�1] (lower
picture) by shifted and windowed Hermite polynomials. It holds l = �2 for the shifted Hermite polynomials and [a,b] = [�3,�1] for the
windowed Hermite polynomials.

M. Paffrath, U. Wever / Journal of Computational Physics 226 (2007) 263–281 271
P ðgðnÞ 6 0Þ ¼
Z

gðnÞ60

qnðnÞ dn ð34Þ

¼
Z

Rn
CgðnÞqnðnÞ dn ð35Þ

�
Z

Rn
Cm

g ðnÞqnðnÞ dn; m ¼ s;w ð36Þ
where
CgðnÞ ¼
0 if gðnÞ > 0;

1 if gðnÞ 6 0;

�
Cm

g ðnÞ ¼
0 if gmðnÞ > 0;

1 if gmðnÞ 6 0;

�
m ¼ s;w: ð37Þ
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The failure integral (36) can be computed, for example, by utilizing importance sampling on the Hermite
approximation, see [14].

6. Applications

The performance of the methods is demonstrated on two applications which are based on ordinary differential
equations. The differential equations which depend on the random variables are projected onto the Polynomial
Chaos space by Galerkin’s method as in (17). In the following, the term ‘‘shift’’ is used for the shift of method (SH)
as well as for the center of the window of method (WH). For all examples, a fixed window size of [l1 � 2,l1 + 2] ·
� � �· [ln � 2,ln + 2] is chosen. Also, the order of Hermite approximation is always equal to 3. Standard, that
means non-adaptive Gauss–Hermite quadrature has been applied for evaluation of the PC coefficients. The num-
ber s in (14) is 4, and the number of integration points N is 4 in the 1D and 64 in the 3D case, respectively.

6.1. The predator–prey model

Predator–prey dynamics can be described by the Lotka–Volterra model with two differential equations (see
for example [21,20]):
_xðtÞ ¼ axðtÞ � bxðtÞyðtÞ;
_yðtÞ ¼ bxðtÞyðtÞ � cyðtÞ:

ð38Þ
The prey population x(t) increases by feeding and decreases by being fed by the predator. The predator pop-
ulation y(t) increases by feeding and decreases by natural extinction. The rates a, b and c are assumed to be
Gaussian random variables:
aðHÞ ¼ �aþ ranðHÞ; ð39Þ
bðHÞ ¼ �bþ rbnðHÞ; ð40Þ
cðHÞ ¼ �cþ rcnðHÞ: ð41Þ
Because there are three independent stochastic input variables, a three-dimensional polynomial expansion
must be performed for the stochastic processes x(t,H) and y(t,H):
xðt;HÞ ¼ X 0ðtÞW0ðHÞ þ
X3

i¼1

X iðtÞW1 niðHÞð Þ þ
X3

i¼1

Xi

j¼1

X i;jðtÞW2 niðHÞ; njðHÞ
� �

þ
X3

i¼1

Xi

j¼1

Xj

k¼1

X i;j;kðtÞW3 niðHÞ; njðHÞ; nkðHÞ
� �

þ � � �

yðt;HÞ ¼ Y 0ðtÞW0ðHÞ þ
X3

i¼1

Y iðtÞW1ðniðHÞÞ þ
X3

i¼1

Xi

j¼1

Y i;jðtÞW2ðniðHÞ; njðHÞÞ

þ
X3

i¼1

Xi

j¼1

Xj

k¼1

Y i;j;kðtÞW3ðniðHÞ; njðHÞ; nkðHÞÞ þ � � � ð43Þ
where Wnðn1; . . . ; nnÞ may be central, shifted or windowed Hermite polynomials. Inserting the three-dimen-
sional Hermite expansion into Eqs. (38) and testing the equations by the base functions gives the final prob-
abilistic equations.

6.1.1. Results for the predator–prey model

In the one-dimensional test case, coefficients a and c in (38) are chosen as deterministic variables
(a = c = 0.1) and coefficient b as a Gaussian random variable with mean 1.0 and standard deviation 0.1.
For each time t, the failure probability is defined as the probability that the prey population x(t,H) becomes
less than the bound � = 1.e � 6:
gðxðt;HÞÞ ¼ xðt;HÞ � �:
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Fig. 5 shows results for the exact solution, centered (CH), shifted (SH) and windowed Hermite (WH). The
shift is l = 4 and the window [2,6]. The failure probabilities for the exact solution are computed by sampling
the integrand (the exact solution) in (34), the failure probabilities for (CH), (SH) and (WH) are computed by
sampling the integrand (the Hermite approximation) in (36). For the exact solution and method (CH), Monte
Carlo sampling is utilized, for (SH) and (WH) importance sampling. The number of Monte Carlo samples is
very high (5,000,000) in order to resolve also very small failure probabilities. Table 1 shows the number of time
steps, function and Hermite evaluations for this example. The number of Hermite evaluations is equal to the
number of time steps times the number of Monte Carlo samples. It is evident from the table that crude Monte
Carlo sampling is not competitive at all. For this example we have used the standard Gauss–Hermite quad-
rature. With the adaptive Gauss quadrature described in [7], a further reduction of function evaluations may
be achieved for the Hermite methods. In addition, the last column of the table shows the number of function
evaluations required for exact computation of the Beta point at a particular time point t = 7. This is included
for comparison of the cost of computing approximate failure probabilities over a time range, on the one hand,
and computing the failure probability using the FORM method at a certain time point, on the other hand. But
note that exact computation of the Beta point has not been utilized for computing the results shown in Fig. 5.

Only for failure probabilities larger than 10�1, (CH) gives acceptable results. Both (SH) and (WH) are much
better than (CH) for small failure probabilities. For failure probabilities larger than 10�2 at time about 9.2, the
(WH) curve is departing from the exact solution curve, because the critical failure region is leaving the win-
dow. So (SH) and (WH), with a given shift, can only resolve the exact solution curve in a time range where the
Beta point does not move too far away from the shift. During sampling of the integrand in (36), an approx-
imation of the Beta point may be computed by solving a discrete version of (20). Fig. 6 shows the transient
evolution of the approximated Beta point and the distance to the shift for method (WH). Again this figure
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Fig. 5. Predator–prey model with a one-dimensional random vector: A comparison of failure probabilities for the exact solution (solid),
centered Hermite (dashed), shifted Hermite (dotted) and windowed Hermite (dashed-dotted) for shift l = 4 and window [2,6].

Table 1
Predator–prey model with a one-dimensional random vector: number of time steps, function and Hermite calls for shift l = 4

MC CH SH WH Beta (t = 7)

F-calls 1,759,798,365 1192 1172 1172 20,409
H-calls – 680,000,000 675,000,000 695,000,000 –
Time steps – 136 135 139 –
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reveals that the relevant time range for (WH) with shift l = 4 has an upper limit of about t = 9.2 because then
the Beta point approaches the lower limit 2 of the window. For a better resolution of small failure probabil-
ities, a larger shift is necessary. Fig. 7 shows a comparison for the shift l = 5 and the window [3, 7]. Both the
resolution of (SH) and (WH) of small failure probabilities is better than for l = 4, but the (WH) curve is
departing from the exact solution curve for failure probabilities larger than 10�3. Fig. 8 shows a comparison
for the shift l = 3 and the window [1,5]. As this example shows, for problems with strongly changing failure
probabilities, it would perhaps be better to adapt the shift with time.

In the three-dimensional test case, all coefficients a,b,c in (38) are chosen as Gaussian random variables, a

and c with mean 0.1 and standard deviation 0.01, b with mean 1.0 and standard deviation 0.1. As initial guess,
the shift for methods (SH) and (WH) is chosen as (0,5,0), that means no shift for parameters a and b, and shift
5 for parameter b, which has turned out to be appropriate for small failure probabilities in the 1D case. Fig. 9
-7

-6

-5

-4

-3

-2

-1

0

6 7 8 9  10  11  12

F
ai

lu
re

 p
ro

ba
bi

lit
y 

(lo
g1

0)

Time

exact
(CH)

(SH) with mu=5
(WH) with center mu=5

Fig. 7. Predator–prey model with a one-dimensional random vector: A comparison of failure probabilities for the exact solution (solid),
centered Hermite (dashed), shifted Hermite (dotted) and windowed Hermite (dashed-dotted) for shift l = 5 and window [3,7].
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shows results for the exact solution, centered, shifted and windowed Hermite. Table 2 shows the number of
time steps, function and Hermite evaluations for this example. As in the 1D case, crude Monte Carlo sampling
is not competitive at all. In addition, the last column of the table shows the number of function evaluations
required for exact computation of the Beta point at a particular time point t = 7.

As can be seen in Fig. 9, (CH) only produces acceptable results for large failure probabilities. For small
probabilities, (SH) and (WH) are much better, even for this coarse initial guess of the shift. As in the 1D case,
the temporal evolution of the Beta point can be computed (see Fig. 10). The computed results of (WH) can
only be trusted until t = 8, when the Beta point approaches the boundary of the window. This corresponds to
the results in Fig. 9 where the (WH) curve is departing from the exact curve at t = 8. Again it may be better to
dynamically adapt the shift to the computed Beta point. This will be investigated in the future. Here we restrict
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Fig. 9. Predator–prey model with a three-dimensional random vector: A comparison of failure probabilities for the exact solution (solid),
centered Hermite (dashed), shifted Hermite (dotted) and windowed Hermite (dashed-dotted) with shift (0,5,0).



Table 2
Predator–prey model with a three-dimensional random vector: number of time steps, function and Hermite calls for shift (0,5,0)

MC CH SH WH Beta (t = 7)

F-calls 1,765,566,892 53,814 60,096 55,424 18,342
H-calls – 840,000,000 905,000,000 780,000,000 –
Time steps – 168 181 156 –
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Fig. 10. Predator–prey model with a three-dimensional random vector: Approximated coordinates of Beta point computed by method
(WH) and center (0,5,0).
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ourselves to fixed shift computations. Fig. 10 shows approximate Beta points (0,5,�2), (0, 4,�2) and (0,3,�1)
for times t = 6, t = 7 and t = 8, respectively. Using these vectors as shifts for (SH) and (WH), one may resolve
different time ranges and failure probabilities.

6.2. The Belousov–Zhabotinsky reaction

The Belousov–Zhabotinsky reaction is an example of an homogeneous oscillating system and can be
described by the following set of ordinary differential equations (see [15])
dcðX Þ
dt
¼ k1cðAÞcðY Þ þ k2cðAÞcðX Þ � k3cðX ÞcðY Þ � 2k4c2ðX Þ;

dcðY Þ
dt
¼ �k1cðAÞcðY Þ � k3cðX ÞcðY Þ þ f

2
k5cðBÞcðZÞ;

dcðZÞ
dt
¼ 2k2cðAÞcðX Þ � k5cðBÞcðZÞ:

ð44Þ
The notation is given in Table 3, the initial values are given in Table 4.
Fig. 11 shows the deterministic solution. For the stochastic computation, coefficient k1 in (44) is assumed to

be a Gaussian variable with mean 1.28 mol L�1 and standard deviation 0.064 (which corresponds to a coef-
ficient of variation of 0.05). An artificial failure criterion is chosen being based upon the amplitude of the bro-
mide ions curve. As one can see in deterministic computations, the amplitude gets smaller with increasing k1.
The ‘failure’ probability is now defined as the probability that the amplitude of the bromide ions curve is smal-
ler than the bound � = 9.e � 5:
gðHÞ ¼ max
t

cðY Þðt;HÞ � �: ð45Þ
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Fig. 11. Deterministic solution of the Belousov–Zhabotinsky reaction.

Table 3
Legend of the Belousov–Zhabotinsky reaction

Variable Substance

A Bromate ions
B Mixture of malonic and bromic acid
X Bromic acid
Y Bromide ions
Z Manganese(III) ions

Table 4
Initial values of the Belousov–Zhabotinsky reaction

Variable Value

A 0.06 mol L�1

B 0.02 mol L�1

X 2.e � 7 mol L�1

Y 2.e � 5 mol L�1

Z 1.e � 4 mol L�1

k1 1.28 L mol�1 s�1

k2 8 L mol�1 s�1

k3 8.e5 L mol�1 s�1

k4 2.e3 L mol�1 s�1

k5 1 L mol�1 s�1

f 1.5
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In this example, the failure function g is not time dependent. Failure functions of type (45) can generally be
used in problems where one asks for the probability of oscillations. The computed failure probabilities are
shown in Table 5. Method (CH) does not detect failure at all. Method (WH) shows the best approximations.
In this example, (SH) does not give satisfactory results. In all examples we have chosen a fixed variance for
(SH). Additional tests have shown that (SH) with smaller variance lead to comparable results as (WH).
The choice of the optimal window size of (WH) and the variance of (SH) will be the subject of future
investigations.



Table 5
Computed failure probabilities for the Belousov–Zhabotinsky reaction

Method Failure probability

Exact solution 0.0186
(CH) 0.0
(SH) with shift 2 0.0082
(SH) with shift 3 0.0145
(SH) with shift 4 0.047
(WH) with window [0,4] 0.0177
(WH) with window [1,5] 0.0183
(WH) with window [2,6] 0.0203
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7. Conclusion

Polynomial chaos expansion may be interpreted as a perturbation ansatz of a stochastic process about its
mean. In this paper, we have considered two methods of adapting polynomial chaos expansion to failure
detection. Here, the mean is no longer of interest, but the tail of the stochastic distribution.

In the examples presented, (SH) and (WH) showed satisfactory results.
Both proposed methods depend on a good estimation of the shift l. The usual procedure is to determine the

point of largest probability of failure, see Eq. (20). For ordinary differential equations, this optimal shift may
be determined once for the initial values. The time evolution of the Beta point/shift is then given by the Kuhn–
Tucker equations
g xðl1; � � � ln; tÞð Þ ¼ 0;

2li þ k
Xn

k¼1

ogðxðl1; . . . ; ln; tÞÞ
oxk

oxk

oli
¼ 0; i ¼ 1; . . . ; n

ð46Þ
which may be coupled with the PC system. The resulting system is a differential algebraic system which must
be solved by implicit integration methods. Another possibility is to integrate the time derivative of Eq. (46) in
combination with the PC system.

Both methods have been applied to two examples which are based on ordinary differential equations. The
methods are also suitable for other models such as stochastic finite elements. Here, the optimization problem
(20) of finding the point with largest probability of failure is also solved once. The element with the largest
stress defines the failure function with a corresponding Beta point and shift. With this shift or window, a poly-
nomial chaos expansion may be performed.

In this paper, we have demonstrated the benefit of shifted and windowed polynomial chaos expansions for
failure detection. Further work will be spent on achieving efficient and accurate methods for the determination
and the adaption of the optimal shift/window.
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Appendix A. Gram–Schmidt orthogonalization procedure for windowed Hermite polynomials

(1) Initialize:
~/0ðxÞ ¼ 1;

c0 ¼ ~/0ðxÞ
�� ��

w
;

/0ðxÞ ¼ 1=c0:
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(2) For k = 0, . . . ,n:
~/kþ1ðxÞ ¼
x� l
b� a

� �kþ1

�
Xk

j¼0

akþ1
j /jðxÞ;

akþ1
j ¼ x� l

b� a

� �kþ1

;/jðxÞ
	 


w

; j ¼ 0; . . . ; k;

ckþ1 ¼ ~/kþ1ðxÞ
�� ��

w
;

/kþ1ðxÞ ¼
Xkþ1

i¼0

bkþ1
i

x� l
b� a

� �i
;

bkþ1
i ¼

Xk

j¼i

akþ1
j bj

i=ckþ1; i ¼ 0; . . . ; k;

bkþ1
kþ1 ¼ 1=ckþ1:
Appendix B. Error estimation of windowed Hermite chaos

In practical applications, one will either combine windowed Hermite chaos with shifted Hermite chaos or use
multiple windowed Hermite chaos with two windows, a smaller and a larger one. This section, in contrast, deals
with error estimation of single windowed Hermite chaos applied for computation of failure integrals. The anal-
ysis is performed for a rotated window Wrot, and all functions are formulated in the rotated coordinate system,
with the last coordinate along the direction of �rgðnÞ in the Beta point, see Fig. B.1. Let ~HðgÞ the Hermite
approximation of ~gðgÞ in the rotated coordinate system, ai 6 gi 6 bi; i ¼ 1; . . . ; n. Then the failure integralZ
P f ¼
~gðgÞ60

~qðgÞ dg
is approximated by
~P f ¼
Z

~HðgÞ60;g2W rot

~qðgÞ dg:
The error Ef ¼ P f � ~P f consists of two components, the error Eð1Þf inside and the error Eð2Þf outside the window:
Ef ¼
Z

~gðgÞ60;g2W rot

~qðgÞ dg�
Z

~HðgÞ<0;g2W rot

~qðgÞ dg

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Eð1Þ
f

þ
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~qðgÞdg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Eð2Þ

f

:

Fig. B.1. Error estimation of failure integral approximation by windowed Hermite.
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As we will see is the error dependent on the slope and curvature of ~g in zeroes of ~g. The larger the slope and
curvature, the smaller will be the error.

B.1. Error estimation of Eð1Þf

For error estimation of Eð1Þf , we will assume that the following two conditions are fulfilled:

� ~HðgÞ approximates ~gðgÞ uniformly in Wrot, i.e. 9d > 0 with
j~gðgÞ � ~HðgÞj 6 d 8g 2 W rot: ðB:1Þ

� The slope of ~g in the neighbourhood of zeroes of ~g must be sufficiently large, more precisely, for 0 < b < B

exist 0 < a0 < a1 with
~gðg0
1; . . . ; g0

n�1; g
0
n þ aÞ < �b;

~gðg0
1; . . . ; g0

n�1; g
0
n � aÞ > b

ðB:2Þ
for all zeroes g0 2 W rot of ~g and a0 6 a 6 a1.

Additionally, it is assumed that
S :¼ gj~gðgÞ 6 0f g is convex: ðB:3Þ

Define
Ngðg1; . . . ; gn�1Þ ¼ fgnj~gðg1; . . . ; gnÞ 6 0; an 6 gn 6 bng;
NH ðg1; . . . ; gn�1Þ ¼ fgnj ~Hðg1; . . . ; gnÞ 6 0; an 6 gn 6 bng
and (

gN ðg1; . . . ; gn�1Þ ¼

min
gn

Ngðg1; . . . ; gn�1Þ if Ngðg1; . . . ; gn�1Þ 6¼ ;;

bn else;

HN g1; . . . ; gn�1ð Þ ¼
min

gn

NH ðg1; . . . ; gn�1Þ if N H g1; . . . ; gn�1ð Þ 6¼ ;;

bn else:

(

Now choose b = d in (B.2), with d from (B.1). This is always possible if B > d. From (B.1), (B.2) it follows that:
max
g1;...;gn�1

jgNðg1; . . . ; gn�1Þ � H N ðg1; . . . ; gn�1Þj 6 a0: ðB:4Þ
Then Z Z Z Z Z Z

jEð1Þf j ¼ j

b1

a1

� � �
bn�1

an1

bn

gN ðg1;...;gn�1Þ
~qðgÞ dgn . . . dg1 �

b1

a1

� � �
bn�1

an�1

bn

HNðg1 ;...;gn�1Þ

~qðgÞ dgn . . . dg1j

6

Z b1

a1

� � �
Z bn�1

an�1

jgN ðg1; . . . ; gn�1Þ � HN ðg1; . . . ; gn�1Þjmax
gn

~qðgÞ dgn�1 . . . dg1

6

Yn�1

i¼1

bi � aið Þ max
g1;...;gn�1

jgN ðg1; . . . ; gn�1Þ � H Nðg1; . . . ; gn�1Þj max
g2W rot

~qðgÞ 6
Yn�1

i¼1

ðbi � aiÞa0 max
g2W rot

~qðgÞ:
So, the larger the slope of ~g in the neighbourhood of zeroes, the smaller will be a0 and the error Eð1Þf .

B.2. Error estimation of Eð2Þf

Consider the optimization problem
min gn

w:r:t: ~gðgÞ 6 0; g 62 W rot

ðB:5Þ
The minimum gmin of (B.5) is located at the boundary oW rot of Wrot.
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Proof. Let gmin 62 W rot. Connect gmin with 0 (the Beta point). From (B.3) it follows that, for all points on this
line, it holds ~gðgÞ 6 0. The line must cut oW rot in a point gw. On the other hand, the coordinate gn decreases
monotonically along the line. So gW

m < gmin
n which is a contradiction. h

It follows that all g, for which ~gðgÞ 6 0 and g 62 W rot, lie in the half plane P ¼ fgkgn P gmin
n P 0g. Analo-

gously to the FORM ansatz it holds
Z
g2P

~qðgÞ dg ¼ Uð�b� gmin
n Þ ðB:6Þ
with U denoting the cumulative density function of the standard 1D normal distribution. So
Eð2Þf

��� ��� 6 Z
g2P

~qðgÞ dg ¼ U �b� gmin
n

� �
: ðB:7Þ
See also Fig. B.1 where gmin
n is denoted by b1. So, the larger the curvature of ~g in the Beta point, the larger will

be gmin
n and the smaller the error Eð2Þf .
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